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Internal Forces in Beams

Forces Associated withiNormal 5tresses

Normal (or axial) force N
Bending moment (plane yz] M,y

Bending moment (plane xz) My

Shearing force Ve

Shearing force Wy

Twisting moment (plane xy] Mg




Simple Formula for Normal Stresses
Due to Pure [or Transverse)] Bending
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* Plane of loads {and of bending) is perpendicular
to neutral axis

= X axis is the neutral axis and is a principal
centroidal axis
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Simple Formula fr urma Stresses
Due to Pure [or Transverse] Bending

InternallEorces atiiie Cross Sechion

* Mormal force N

;égkz
* Bending moments My and My about the x @
P,

and y axes

Kinematic Relations

- M
* Plane cross section before deformation is assumead

* Plane cross section before deformation is assumed
to remain plane after deformation

+ Both the displacement w in the axial direction and
the strain £ are linear functions of x and y
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a, b, c are independent of x and y

to remain plane after deformation
W
Simple Formula for Normal Stresses Simple Formula for Normal Stresses
Due to Pure [or Transverse)] Bending Due to Pure [or Transverse] Bending
Kinematic Relations Static Relations
* Sum of internal stresses in the axial direction

fch=N

oA

= Sum of moments of internal stresses about
¥ axis

axdA= My
A
= Sum of moments of internal stresses about
X axis

sydA=M,
A




* \WWhen the plane of bending is not a principal plane,
then

+ Either use a more general formula for
the normal stresses (resulting from
a bending moment M,.), or

» Decompose the bending moment into
components whose vector representations
are along principal
centroidal axes

Case of Combined Normal Force
and Bending Moments

Constitutive Relations o
= For linearly elastic material - uniaxial stress state
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* From the static relations
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Unsymmetric Bending of
Straight Beams

Case of Combined Normal Force
and Bending Moments

+« From the static relations
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Case of Combined Normal Force
and Bending Moments
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Case of Combined Normal Force
and Bending Moments
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* The general formula for normal stresses in
terms of the normal force and bending moments:

A 8 8% (N
a=[1 x ¥]| 8 Iy by M, | ]
Sl M,




Case of Combined Normal Force
and Bending Moments

Simplifications
* If x and y are centroidal axes, then

] Sx=Sy=0

] A 0 0" (N
o=[1 x y][ 0 1, 1 M, b [
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= |f x and y are centroidal principal axes,
thenﬂx‘——sy‘——D,Ixy;‘ﬂ "

Case of Combined Normal Force
and Bending Moments

M
o= _E + _I_yx-l- _.I._’E y
¥ X
Meutral Axis

Is the axis at which the normal stress G =0
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Case of Combined Normal Force
and Bending Moments

= If x and y are centroidal principal axes,
then Sx = S:’f= 0, 'x}r= 0

{ + i+ Qi + I+ B+ }
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Case of Combined Normal Force
and Bending Moments

* Assumption of plane cross section
before deformation remains plane
- Is accurate for:

- axial load [away from point of
application of load)
- pure bending P

- Is approximate for transverse bending

= Assumption of undeformable cross
sections k.

Ex =&y =Ygy =0

Lien remies
::::: AT

- Only approximate for bending

Line becomes
curved
Line remains ™%
straight, yet rotates

deformed




Case of Combined Normal Force
and Bending Moments

* Assumption of undeformable cross

sections

Calculations of Displacements

Rotation, Curvature and Axial Strain
= For the case of a single bending moment Mx

z ¥ _ pdz
= — = dn = dz - edz ¥
Ex = &y = Tyy 0 R,y
- Only approximate for bending P 1 _dd_& y z
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- More appreximate than for beams dz
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jdz [ Calculations of Displacements
]*F * Analogously, for a bending moment M,
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Calculations of Displacements

Displacement equations

from which
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Calculations of Displacements

Simplifications

* If x and y are centroidal axes, and N is absent, then
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Calculations of Displacements

Simplifications
* If x and y are centroidal axes, and N is absent, then

gy Iy Lo |7V M 14,
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= If x and y are centroidal principal axes,
and N is absent, then
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Calculations of Displacements

Case of Transverse Bending

* Governing equation for the elementary theory of

beams: ¥V
Fmax.
|
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- For uniform beams
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Bending streds varlaban

Calculations of Displacements

Case of Transverse Bending

:I - For uniform beams

¥

Fmax.
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where subscripts xand y have | = %

been dropped for convenience., z—’\l— !

Banding strass varlalan

Mormal strain variation
{profile view)

Bending stress variation
{profile view)
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Calculations of Displacements
Case of Transverse Bending
v, v * Successive integration of the differential
Cmax equation
— b Transverse shear
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Calculations of Displacements

Case of Transverse Bending

:l Bending Moment
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Calculations of Displacements

Case of Transverse Bending

Transverse Displacement
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Calculations of Displacements

Case of Transverse Bending

Slope
EIE =fffpdzdzdz
dz
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Calculations of Displacements

« Case of combined
-1
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Calculations of Displacements

* Displacement equations

A
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Calculations of Displacements

* If .y are centroidal principal axes

dw N

dz EA

d’u _ M, d’v _ M
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dz Ely de Elx

w is the displacement of the axis
of the beam in the z direction
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